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Abstract — Differential evolution (DE) algorithms are a 

family of evolutionary optimization techniques that use a 

rather greedy and less stochastic approach to problem solving, 

when compared to classical evolutionary algorithms. This 

paper proposes a new approach to solve electromagnetic 

design problems that combines the DE algorithm with a 

generator of chaos sequences. This approach is tested on the 

design of a loudspeaker model with seventeen degrees of 

freedom, for showing its applicability to electromagnetic 

problems. The results show that DE algorithm with chaotic 

sequences presents better, or at least similar, results when 

compared to the standard DE algorithm and other 

evolutionary algorithms available in the literature. 

I. INTRODUCTION 

Recent literature contains several optimization 

metaheuristic algorithms based on evolutionary approaches. 

Differential Evolution (DE) is a population-based and direct 

stochastic search algorithm with simple yet powerful and 

straightforward features that make it attractive for 

numerical optimization. DE uses a combining of simple 

arithmetic operators with the classical operators of 

crossover, mutation and selection to evolve from a 

randomly generated initial population to a final solution. 

The contribution of the current work is to present an 

alternative approach of DE combined with chaos sequences, 

called Chaotic Differential Evolution (CDE) for the 

optimization of electromagnetic devices. The potential of 

CDE is demonstrated on the optimization of a seventeen-

parameter loudspeaker model. Comparative results against 

other evolutionary algorithms demonstrate the good 

performance of the CDE.  

II. DIFFERENTIAL EVOLUTION 

The fundamental idea behind DE is a scheme whereby it 

generates the trial parameter vectors. In each step, DE 

mutates vectors by adding weighted, random vector 

differentials to them. If the performance of the trial vector 

is better than that of the target, the target vector is replaced 

by the trial vector in the next generation. The variant 

implemented here was the DE/rand/1/bin [1]. In this case, 

the classical equation of DE is: 
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stands for the position of the i-th individual of a mutant 

vector; MF > 0 is a real parameter, called mutation factor, 

which controls the amplification of the difference between 

two individuals to avoid search stagnation. The mutation 
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One of the simplest dynamic systems evidencing chaotic 

behavior is called logistic map [2], whose equation is given 

by: 
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where t is the sample, and µ is a control parameter in the 

range 0≤ µ ≤ 4. The behavior of the system defined by (1) is 

highly sensitive to variations of µ. The value of µ 

determines whether y stabilizes at a constant size, oscillates 

between a limited sequence of sizes, or behaves chaotically 

in an unpredictable pattern. Very small differences in the 

initial value of y can cause substantial differences in its 

long-time behavior.  

Eq. (2) is deterministic, displaying chaotic dynamics 

when µ = 4 and { }1,75.0,50.0,25.0,0)1( ∉y . In our case, 

y(t) is distributed in the range (0,1) provided the initial y(1) 

∈ (0,1). Fig.1 shows, only for example, the behavior of y 

for µ equals to 4, 3 and 1 with respect to the iteration (t) for 

a fixed value of y(0). It is easy to observe that the 

sequences are very different, depending on the value of the 

parameter µ . 

Fig. 1. The influence of the parameter µ  

So, this work proposes a DE approach, which combines 

standard DE with chaotic sequences based on logistic map. 

In the DE context, the concepts of chaotic optimization 

methods can be useful. The parameters CR and MF of 

classical DE approaches are the key factors affecting the 
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algorithm’s convergence. However, both parameters cannot 

ensure the optimization’s ergodicity completely in the 

search phase, since they are constant factors in traditional 

DE. Therefore, this paper offers a approach that introduces 

chaotic mapping with ergodicity, irregularity and the 

stochastic property into DE. This is done in order to 

improve the global convergence characteristics of the 

algorithm. The utilization of chaotic sequences in 

evolutionary algorithms can be useful to help the algorithms 

to escape from local minima. 

The proposed modification adopted in CDE is given by: 
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III. LOUDSPEAKER PROBLEM 

This model was based in the loudspeaker layout used as a 

test problem in [3]. The model is well described in [4], so it 

will omitted here. In this paper, we have considered the 

problem of minimizing the volume of material used in the 

construction of the loudspeaker. The device must also 

present at least some minimum prescribed value for the 

magnetic flux density in the air gap, in order to allow the 

loudspeaker to work properly. This condition was modeled 

as an inequality constraint, in which the value of B was 

required to be larger than a given fixed value. So, the 

proposed mathematical definition for the loudspeaker 

optimization problem used is: 

 

min f(x) = Volume 

Subject to: |B| ≥ Bref                                      (4) 
 

The volume of material used in the loudspeaker is given 

by the solid generated by the revolution of the model 

around the central axis. The loudspeaker was modeled [5] 

using the LUA scripting language [6] to describe the 

geometry of the devices, and using the Finite Element 

Method Magnetics 4.0 (FEMM) [7] software as the 

magnetic solver.  
 

IV. OPTIMIZATION RESULTS  

For the optimization of loudspeaker problem, 30 

independent runs were performed for each optimization 

method. The setup of DE and CDE approaches used was 

the following: crossover rate of CR = 0.8, population size 

equal to 15, and stopping criterion tmax = 400 generations. A 

constant mutation factor of MF = 0.4 was used in the 

classical DE approach. 

The optimization results of evolution strategies (ES) [8] 

and particle swarm optimization [9] are also presented, in 

order to allow a comparative analysis of the performance of 

the proposed algorithm. The same number of evaluations of 

the objective (cost) function used by the DE and CDE 

approaches (15 x 400 = 6,000 evaluations) was used as the 

stopping criterion for the ES and PSO. Other particular 

parameters and procedures used in these optimization 

methods were:  

• PSO: number of particles M = 15, social and cognitive 

coefficients both set as 2.05, and the inertia weight of 

each particle is linearly decreased over the course of 

each run, starting from 0.9 and ending at 0.4. 

• ES: uses the sum strategy ES(µ+λ), where the number 

of parents and offspring are set to µ = 5 and λ = 15, 

respectively. 

From Table I, one can see that the solutions of 

minimization of volume (minimum and mean values) 

obtained by DE and CDE are superior to the results of ES 

and PSO, with the best results being obtained by the CDE. 

DE was also able to obtain ‘best run’ results, but with a 

slightly worse performance than the one found by CDE. 

However, CDE was also the most robust algorithm for this 

problem, with the smallest “worst run” and standard 

deviation for the volume.  
TABLE I  

RESULTS OBTAINED FOR THE LOUDSPEAKER DESIGN  

Parameter DE CDE ES PSO 

Best run: Volume [mm3] 5543.1 5406.5 11426.6 6431.8 

Worst run: Volume [mm3] 24890.4 6943.8 30757.4 37377.5 

Average: Volume [mm3] 6587.2 5906.7 22333.6 12059.3 

Std. Dev.: Volume [mm3] 5003.8 404 6425.9 8153 

Rate of feasible solutions 
found (%) 

100 100 46.67 100 

V. CONCLUSION   

In this paper a CDE technique for the global 

optimization of electromagnetic devices was introduced. 

The CDE algorithm takes advantage of the powerful 

characteristics of the DE methodology, with a modification 

in the routines for the generation of new candidate solutions 

to include diversity-promoting chaotic sequences based on 

the logistic map equation.  

The comparative results obtained for an ES and a PSO 

approach show the potential of the CDE to obtain high-

quality solutions to multimodal, nonlinear, and constrained 

problems in electromagnetics, even under a modest 

computational budget. 
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